
MP2I - 2025/2026 Informatique – TD n°12 - Dichotomie 1/1

TD n°12 – Recherche dans un tableau trié
On suppose qu’on dispose d’un tableau d’entiers tab trié dans l’ordre croissant. On veut écrire une fonction pour
déterminer, de manière efficace, si un élément x est présent dans le tableau tab.
De manière plus précise, on va rechercher la première occurence (si elle existe) de x dans tab entre les indices g exclu
et d inclus. C’est à dire dans tab.(g+1), tab.(g+2), ... , tab.(d).
Tant que le sous-tableau considéré n’est pas réduit à un élément (c’est à dire tant que g+1<d),

■ on calcule l’indice m du milieu de g et d. On teste si la valeur tab.(m) est supérieure ou égale à la valeur
recherchée x.

■ Si c’est le cas, alors on sait que la première occurence de x dans tab, si elle existe, sera dans l’intervalle
d’indices ]g, m] donc d prend la valeur de m.

■ Sinon on sait que x ne peut apparaître que dans l’intervalle d’indices ]m, d] et g prend la valeur de m.

Lorsque le sous-tableau pour les indices dans ]𝑔, 𝑑] est réduit à 1 élément, alors soit t.(d)==x et on renvoie d, soit
t.(d)!=x et on renverra -1 pour indiquer que x n’est pas dans le tableau.
Exemple : recherche de la première occurence de la valeur 19 entre les indices 2 exclu et 14 inclus :

12
0

14
1

15
2

17
3

19
4

19
5

19
6

23
7

24
8

31
9

45
10

47
11

52
12

52
13

63
14

65
15

67
16

g m d

g m d

g m d

g m d

g d

tab

Avant itération
itération 1
itération 2
itération 3
itération 4

1. Implémenter en Ocaml une fonction recherche : int array -> int -> int -> int -> int qui respecte la spéci-
fication suivante :
Entrées : un tableau 𝑡 = (𝑡0, . . . , 𝑡𝑛−1), une valeur 𝑥, deux indices 𝑔 et 𝑑.
Préconditions : ■ 𝑡 est trié par ordre croissant,

■ −1 ⩽ 𝑔 < 𝑑 ⩽ 𝑛 − 1.
Résultat : ■ Si 𝑥 apparait dans le tableau entre les indices 𝑔 + 1 et 𝑑, un indice 𝑖 ∈

]𝑔, 𝑑] tel que 𝑡𝑖 = 𝑥 et pour 𝑔 < 𝑗 < 𝑖, 𝑡 𝑗 ≠ 𝑥.
■ Sinon −1

2. Quelle valeur donner à 𝑔 et 𝑑 pour rechercher dans le tableau entier ?
3. Justifier soigneusement la terminaison de cette fonction.
4. Démontrer que la propriété suivante est un invariant : "Si 𝑥 apparait dans le tableau, alors il apparait pour la

première fois entre les indices 𝑔 + 1 et 𝑑".
5. Conclure quant à la correction de la fonction recherche écrite.

Pour étudier la complexité, on va plutôt regarder la version récursive suivante, qui fonctionne selon le même principe :
let rec recherche_rec t x g d =
if g+1=d then
if t.(d) = x then d
else -1

else let m = (g+d)/2 in
if t.(m)>=x then recherche_rec t x m d
else recherche_rec t x g m;;

6. De quoi va dépendre la complexité de cette fonction?

7. On note 𝑛 = 𝑑 − 𝑔 la taille du sous tableau entre les indices g+1 et d. Soit 𝑚 =
𝑔 + 𝑑

2
le milieu entre g et d.

Quelle est la taille du sous-tableau d’indices ]𝑔, 𝑚] ? Quelle est la taille du sous-tableau d’indices ]𝑚, 𝑑] ?
8. En déduire la formule de récurrence de la complexité de la fonction recherche.

On suppose que la taille 𝑛 du tableau initial est une puissance de 2.

9. Trouver la complexité de la fonction sur un tableau de taille 𝑛 = 2𝑘.


